16.6 Stiff Sets of Equations 727

ytemp (i)=y(i)+ytemp(n)
enddo 11
x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
h2=hx*h
do 13 nn=2,nstep General step.
do 12 i=1,neqns
n=neqgns+i
ytemp (n)=ytemp (n) +h2*yout (i)
ytemp (i)=ytemp (i)+ytemp(n)
enddo 12
x=x+h
call derivs(x,ytemp,yout)
enddo 13
do 14 i=1,neqns Last step.
n=neqgns+i
yout (n)=ytemp (n) /h+halfh*yout (i)
yout (i)=ytemp (i)
enddo 14
return
END

Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while the first derivatives are stored in the second n elements. The right-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n=1,234,5,... (16.5.6)
and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:
Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505-535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations[1]:

u' = 998u + 1998v

, (16.6.1)
v = —999u — 19990

with boundary conditions

u(0) =1 v(0)=0 (16.6.2)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



728 Chapter 16. Integration of Ordinary Differential Equations

Figure 16.6.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it is supposed that the equation has two solutions, shown as solid and dashed lines. Although the initial
conditions are such as to give the solid solution, the stability of the integration (shown as the unstable
dotted sequence of segments) is determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.

By means of the transformation
u=2y—z v=—y+z (16.6.3)

we find the solution

9e—T _ o—1000z

I (16.6.4)

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of the e =100 term would require a stepsize h < 1/1000 for
the method to be stable (the reason for this is explained below). This is so even
though the e =990 term is completely negligible in determining the values of « and
v as soon as one is away from the origin (see Figure 16.6.1).

This is the generic disease of stiff equations. we are required to follow the
variation in the solution on the shortest length scale to maintain stability of the
integration, even though accuracy requirements allow a much larger stepsize.

To see how we might cure this problem, consider the single equation

y = —cy (16.6.5)

where ¢ > 0 isaconstant. The explicit (or forward) Euler scheme for integrating
this equation with stepsize h is

Ynt1 = Yn + hy,, = (1 — ch)yn (16.6.6)
The method is called explicit because the new value y.,,41 is given explicitly in

terms of the old value y,,. Clearly the method is unstable if 4 > 2/¢, for then
|yn| — 00 88N — 0.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



16.6 Stiff Sets of Equations 729

The simplest cureisto resort to implicit differencing, where the right-hand side
is evaluated at the new y location. In this case, we get the backward Euler scheme:

Ynt+1 = Yn + hy;H_l (1667)
or
Y1 = (16.6.8)
14ch

The method is absolutely stable: evenas h — oo, y,+1 — 0, which isin fact the
correct solution of the differential equation. If we think of = as representing time,
then the implicit method convergesto the true equilibrium solution (i.e., the solution
at late times) for large stepsizes. This nice feature of implicit methods holds only
for linear systems, but even in the general case implicit methods give better stability.
Of course, we give up accuracy in following the evolution towards equilibrium if
we use large stepsizes, but we maintain stability.

These considerations can easily be generalized to sets of linear equations with
congtant coefficients:

y=-C-y (16.6.9)
where C is a positive definite matrix. Explicit differencing gives
Yni1 = (1-Ch)-y, (16.6.10)

Now a matrix A" tends to zero as n — oo only if the largest eigenvalue of A
has magnitude less than unity. Thusy,, is bounded as n — oo only if the largest
eigenvalue of 1 — Ch is less than 1, or in other words

h < 3 2 (16.6.11)
where \.x IS the largest eigenvalue of C.
On the other hand, implicit differencing gives
Yns1 = Yn T hYpp (16.6.12)
or
Yoi1 = (14+Ch) -y, (16.6.13)

If the eigenvalues of C are ), then the eigenvalues of (1 + Ch) ~! are (1 + A\h) 7L,
which has magnitude less than one for al h. (Recal that al the eigenvalues of a
positive definite matrix are nonnegative.) Thus the method is stable for all stepsizes
h. The penalty we pay for this stability is that we are required to invert a matrix
at each step.

Not all equations are linear with constant coefficients, unfortunately! For
the system

y' =f(y) (16.6.14)
implicit differencing gives

Yog1 = Yo + 2 (Vi) (16.6.15)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



730 Chapter 16. Integration of Ordinary Differential Equations

Ingeneral thisis some nasty set of nonlinear equationsthat hasto be solvediteratively
at each step. Suppose we try linearizing the equations, as in Newton's method:

ynJrl :yn + h

f(y,) + g—;‘ Vg1 — m] (16.6.16)

n

Here 0f / Jy isthe matrix of the partial derivativesof theright-hand side (the Jacobian
matrix). Rearrange equation (16.6.16) into the form

of

-1
Ynt1 =Yn +h [1 - ha—y} -(y,,) (16.6.17)

If h is not too big, only one iteration of Newton's method may be accurate enough
to solve equation (16.6.15) using equation (16.6.17). In other words, at each step
we have to invert the matrix
of

1-h ay (16.6.18)
tofindy, . Solving implicit methods by linearization is called a “ semi-implicit”
method, so equation (16.6.17) isthe semi-implicit Euler method. It isnot guaranteed
to be stable, but it usualy is, because the behavior is locally similar to the case of
a constant matrix C described above.

So far we have dealt only with implicit methods that are first-order accurate.
While these are very robust, most problemswill benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

e Generalizations of the Runge-Kutta method, of which the most useful
are the Rosenbrock methods. The first practical implementation of these
ideas was by Kaps and Rentrop, and so these methods are also called
Kaps-Rentrop methods.

e Generalizations of the Bulirsch-Stoer method, in particular asemi-implicit
extrapolation method due to Bader and Deuflhard.

e Predictor-corrector methods, most of which are descendants of Gear's
backward differentiation method.

We shall give implementations of the first two methods. Note that systems where
the right-hand side depends explicitly on z, f(y, x), can be handled by adding = to
the list of dependent variables so that the system to be solved is

<;’>/ - G) (16.6.19)

In both the routines to be given in this section, we have explicitly carried out this
replacement for you, so the routines can handle right-hand sides of the form f(y, z)
without any special effort on your part.

We now mention an important point; It is absolutely crucial to scale your vari-
ables properly when integrating stiff problems with automatic stepsize adjustment.
As in our nonstiff routines, you will be asked to supply a vector y ., with which
the error is to be scaled. For example, to get constant fractional errors, simply set
Yeeal = |Y]- You can get constant absolute errors relative to some maximum values

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



16.6 Stiff Sets of Equations 731

by setting y,.,,; equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
threshold C and the absolute error below the threshold by setting

Yscar = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, then each component of C should
be of order unity. If you are not sure what values to take for C, simply try
setting each component equal to unity. e strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be dert for situations where double precision is necessary.

Rosenbrock Methods

These methods have the advantage of being relatively simple to understand and imple-
ment. For moderate accuracies (e < 10~* — 107 in the error criterion) and moderate-sized
systems (N < 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(@o+h) =y, + Y cik (16.6.21)
=1

where the corrections k; are found by solving s linear equations that generalize the structure
in (16.6.17):

i—1 1—1
(1—'yhf')~ki:hf<y0+2aijkj>+hf'~2’yijkj7 i=1,...,s (16.6.22)
j=1 j=1

Here we denote the Jacobian matrix by f’. The coefficients v, ¢;, a;j, and v;; are fixed
constants independent of the problem. If v = ~;; = 0, thisis simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively for ki, ko, . ...

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [2] discovered an embedded or Runge-Kutta-Fehlberg method
as described in §16.2: Two estimates of the form (16.6.21) are computed, the “real” oney and
alower-order estimate y with different coefficients ¢;, = 1,..., 5, where § < s but the k;
are the same. The difference between y andy leads to an estimate of the local truncation error,
which can then be used for stepsize control. Kaps and Rentrop showed that the smallest value
of s for which embedding is possibleis s = 4, § = 3, leading to afourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

i—1

g, = > ks + ks (16.6.23)

j=1
The equations then take the form
(L/vh 1) -9y =f(yo)

(1/vh — ") - gy = f(yy + a219;) + 219, /h
(L/vh — 1) - 95 = (Yo + 319, + a320,) + (310, + €320,)/h
(1/7vh — 1) -9y = (Yo + aa10; + @20, + aa30;) + (ca10; + ca20, + ca39y)/h

(16.6.24)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



* % *

732 Chapter 16.  Integration of Ordinary Differential Equations

In our implementation stiff of the Kaps-Rentrop algorithm, we have carried out the
replacement (16.6.19) explicitly in equations (16.6.24), so you need not concern yourself
about it. Simply provide a subroutine (called derivs in stiff) that returnsf (called dydx)
asafunction of z andy. Also supply a subroutine jacobn that returns f* (dfdy) and of/9z
(dfdx) asfunctions of x andy. If 2 does not occur explicitly on the right-hand side, then dfdx
will be zero. Usually the Jacobian matrix will be available to you by analytic differentiation of
theright-hand sidef. If not, your subroutine will have to compute it by numerical differencing
with appropriate increments Ay.

Kaps and Rentrop gave two different sets of parameters, which have dlightly different
stability properties. Severa other sets have been proposed. Our default choice is that of
Shampine [3], but we al so give you one of the Kaps-Rentrop sets as an option. Some proposed
parameter sets require function evaluations outside the domain of integration; we prefer to
avoid that complication.

The calling sequence of stiff isexactly the same as the nonstiff routines given earlier
in this chapter. It isthus “plug-compatible” with them in the general ODE integrating routine
odeint. This compatibility requires, unfortunately, one slight anomaly: While the user-
supplied routine derivs isa dummy argument (which can therefore have any actua name),
the other user-supplied routine is not an argument and must be named (exactly) jacobn.

stiff begins by saving the initial values, in case the step has to be repeated because
the error tolerance is exceeded. The linear equations (16.6.24) are solved by first computing
the LU decomposition of the matrix 1/~vh — f’ using the routine ludcmp. Then the four
g, are found by back-substitution of the four different right-hand sides using 1ubksb. Note
that each step of the integration requires one call to jacobn and three calls to derivs (one
call to get dydx before caling stiff, and two calls inside stiff). The reason only three
cals are needed and not four is that the parameters have been chosen so that the last two
cals in equation (16.6.24) are done with the same arguments. Counting the evaluation of
the Jacobian matrix as roughly equivalent to N evaluations of the right-hand side f, we see
that the Kaps-Rentrop scheme involves about NV + 3 function evaluations per step. Note that
if NV islarge and the Jacobian matrix is sparse, you should replace the LU decomposition
by a suitable sparse matrix procedure.

Stepsize control depends on the fact that

YCxact = y + O(h’5)

R (16.6.25)
YCxact = y + O(h’4)

Thus
ly — 9l = O(h") (16.6.26)

Referring back to the steps leading from equation (16.2.4) to equation (16.2.10), we see
that the new stepsize should be chosen as in equation (16.2.10) but with the exponents 1/4
and 15 replaced by 1/3 and 1/4, respectively. Also, experience shows that it is wise to
prevent too large a stepsize change in one step, otherwise we will probably have to undo
the large change in the next step. We adopt 0.5 and 1.5 as the maximum allowed decrease
and increase of h in one step.

SUBROUTINE stiff(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)

INTEGER n,NMAX,MAXTRY

REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n),SAFETY,GROW,
PGROW, SHRNK , PSHRNK , ERRCON, GAM, A21,A31,A32,A2X,A3X,C21,
€31,C32,C41,C42,C43,B1,B2,B3,B4,E1,E2,E3,E4,C1X,C2X,C3X,
C4x

EXTERNAL derivs

PARAMETER (NMAX=50,SAFETY=0.9,GROW=1.5,PGROW=-.25,
SHRNK=0.5,PSHRNK=-1./3. ,ERRCON=. 1296 ,MAXTRY=40)

PARAMETER (GAM=1./2.,A21=2.,A31=48./25.,A32=6./25.,C21=-8.,
€31=372./25.,C32=12./5. ,C41=-112./125. ,CA2=-54. /125 . ,
C43=-2./5.,B1=19./9.,B2=1./2.,B3=25./108.,B4=125./108.,
E1=17./54.,E2=7./36.,E3=0.,E4=125./108.,C1X=1./2.,

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



*

16.6 Stiff Sets of Equations 733

C2X=-3./2.,C3%X=121./50. ,C4X=29./250. ,A2X=1. , A3X=3./5.)

C USES derivs, jacobn, | ubksh, | udcnp

Fourth-order Rosenbrock step for integrating stiff o.d.e.’s, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y(1:n) and its
derivative dydx(1:n) at the starting value of the independent variable x. Also input are
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal(1:n)
against which the error is scaled. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
derivs is a user-supplied subroutine that computes the derivatives of the right-hand side
with respect to x, while jacobn (a fixed name) is a user-supplied subroutine that computes
the Jacobi matrix of derivatives of the right-hand side with respect to the components of y.
Parameters: NMAX is the maximum value of n; GROW and SHRNK are the largest and smallest
factors by which stepsize can change in one step; ERRCON= (GROW/SAFETY) ** (1/PGROW)
and handles the case when errmax ~ 0.

INTEGER i,j,jtry,indx (NMAX)

REAL d,errmax,h,xsav,a(NMAX,NMAX),dfdx(NMAX) ,dfdy (NMAX,NMAX),

dysav (NMAX) , err (NMAX) , g1 (NMAX) , g2 (NMAX) , g3 (NMAX) ,
g4 (NMAX) , ysav (NMAX)

xsav=x Save initial values.

don i=1,n
ysav(i)=y(i)
dysav(i)=dydx (i)

enddo 11

call jacobn(xsav,ysav,dfdx,dfdy,n,NMAX)

The user must supply this subroutine to return the n-by-n matrix dfdy and the vector dfdx.

h=htry Set stepsize to the initial trial value.
do 23 jtry=1,MAXTRY

do13 i=1,n Set up the matrix 1 — ~vhf’.

do12 j=1,n
a(i,j)=-dfdy(i,j)

enddo 12
a(i,i)=1./(GAM*h)+a(i,i)

enddo 13

call ludcmp(a,n,NMAX,indx,d) LU decomposition of the matrix.

do14 i=1,n Set up right-hand side for g .
gl(i)=dysav(i)+h*C1X*dfdx (i)

enddo 14

call lubksb(a,n,NMAX,indx,gl) Solve for g;.

do1s i=1,n Compute intermediate values of y and x.
y(i)=ysav(i)+A21*g1 (i)

enddo 15

x=xsav+A2X*h

call derivs(x,y,dydx) Compute dydx at the intermediate values.

do 16 i=1,n Set up right-hand side for g,.
g2(i)=dydx (i) +h*C2X*dfdx (i)+C21*gl(i)/h

enddo 16

call lubksb(a,n,NMAX,indx,g2) Solve for g,.

do17 i=1,n Compute intermediate values of y and x.
y(i)=ysav(i)+A31*gl(i)+A32xg2(i)

enddo 17

x=xsav+A3X*h

call derivs(x,y,dydx) Compute dydx at the intermediate values.

dos i=1,n Set up right-hand side for gs.
g3(i)=dydx (i) +h*C3X*dfdx (1)+(C31*gl (i)+

€32%g2(i))/h

enddo 18

call lubksb(a,n,NMAX,indx,g3) Solve for gs.

do19 i=1,n Set up right-hand side for g,.

g4 (i)=dydx (i) +h*C4X*dfdx (1)+(C41*xgl (i)+
C42%g2(1)+C43%g3(i))/h

enddo 19
call lubksb(a,n,NMAX,indx,g4) Solve for g,.
do2s i=1,n Get fourth-order estimate of y and error estimate.

y(i)=ysav(i)+Bl*gl(i)+B2*g2(i)+B3*g3(i)+B4*g4 (i)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



* K K X ¥ ¥ X

734 Chapter 16.  Integration of Ordinary Differential Equations

err(i)=E1*xgl(i)+E2xg2 (i) +E3*g3(i)+E4*g4 (i)

enddo 21

x=xsav+h

if (x.eq.xsav)pause ’stepsize not significant in stiff’
errmax=0. Evaluate accuracy.

do22 i=1,n
errmax=max (errmax,abs (err(i)/yscal(i)))
enddo 22
errmax=errmax/eps Scale relative to required tolerance.
if (errmax.le.1.)then Step succeeded. Compute size of next step and re-
hdid=h turn.
if (errmax.gt.ERRCON) then
hnext=SAFETY*h*errmax**PGROW
else
hnext=GROW*h
endif
return
else Truncation error too large, reduce stepsize.
hnext=SAFETY*h*errmax**PSHRNK
h=sign(max (abs (hnext) ,SHRNK*abs (h)) ,h)
endif
enddo 23 Go back and re-try step.
pause ’exceeded MAXTRY in stiff’
END

Here are the Kaps-Rentrop parameters, which can be substituted for those of Shampine
simply by replacing the PARAMETER statement:

PARAMETER (GAM=.231,A21=2.,A31=4.52470820736,A32=4.16352878860,
C21=-5.07167533877,C31=6.02015272865,C32=.159750684673,
C41=-1.856343618677,C42=-8.50538085819,C43=
-2.08407513602,B1=3.95750374663 ,B2=4.62489238836,B3=
.617477263873,B4=1.282612945268 ,E1=-2.30215540292,
E2=-3.07363448539,E3=.873280801802,E4=1.282612945268,
C1X=GAM, C2X=-.396296677520e-01,C3X=.550778939579,
C4X=-.553509845700e-01,A2X=.462,A3X=.880208333333)

As an example of how stiff is used, one can solve the system
y1 = —.013y1 — 1000y1y3
ys = —2500y2y3 (16.6.27)
ys = —.013y; — 1000y1y3 — 2500y2y3

with initial conditions
y1(0) =1, y2(0) = 1, y3(0) =0 (16.6.28)

(Thisistest problem D4 in [4].) We integrate the system up to z = 50 with an initial stepsize
of h = 2.9 x 107 using odeint. The components of C in (16.6.20) are all set to unity.
The routines derivs and jacobn for this problem are given below. Even though the ratio
of largest to smallest decay constants for this problem is around 10°, stiff succeeds in
integrating this set in only 29 steps with e = 10~*. By contrast, the Runge-Kutta routine
rkqgs requires 51,012 steps!

SUBROUTINE jacobn(x,y,dfdx,dfdy,n,nmax)
INTEGER n,nmax,i
REAL x,y(%),dfdx(*),dfdy(nmax,nmax)
don i=1,3

dfdx(i)=0.
enddo 11

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



16.6 Stiff Sets of Equations 735

dfdy(1,1)=-.013-1000.*y(3)
dfdy(1,2)=0.
dfdy(1,3)=-1000.*y (1)
dfdy(2,1)=0.
dfdy(2,2)=-2500.*y(3)
dfdy(2,3)=-2500.*y(2)
dfdy(3,1)=-.013-1000.*y(3)
dfdy(3,2)=-2500.*y(3)
dfdy(3,3)=-1000.*y (1) -2500.*y(2)
return

END

SUBROUTINE derivs(x,y,dydx)

REAL x,y(%),dydx (%)

dydx (1)=-.013%y(1)-1000. ¥y (1) *y(3)

dydx (2)=-2500. ¥y (2) *y (3)

dydx (3)=-.013%y(1)-1000. ¥y (1) *y (3) -2500. ¥y (2) ¥y (3)
return

END

Semi-implicit Extrapolation Method

The Bulirsch-Stoer method, which discretizesthedifferential equation using the modified
midpoint rule, does not work for tiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the origina Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 —Yno1 = 2hf (%1)

(16.6.29)
Convert this equation into semi-implicit form by linearizing the right-hand side about f(y,, ).
The result is the semi-implicit midpoint rule:

of of of
It is used with a special first step, the semi-implicit Euler step (16.6.17), and a specia
“smoothing” last step in which the last y,, is replaced by

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewritethe equationsusing Ax = Y,y — Yy
With h = H/m, start by calculating

Ag = {l—hﬁ}l-hf(y )
’ dy 0 (16.6.32)
Y1 =Yoo+ Ao
Then for k = 1,...,m — 1, set
Ap=A +2{1—hg}1~[hf(y ) = Ap_i]
P ay RO (16.6.33)

Vit =Y + A%

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



736 Chapter 16.  Integration of Ordinary Differential Equations

Finally compute

A —{1—ha—f}l~[hf(y ) = Ami]
m ay m m—1 (16634)

It iseasy to incorporate the replacement (16.6.19) in the above formulas. The additional
terms in the Jacobian that come from of /9 al cancel out of the semi-implicit midpoint rule
(16.6.30). In the specidl first step (16.6.17), and in the corresponding equation (16.6.32), the
term hf becomes hf + h20f/0z. The remaining equations are all unchanged.

This agorithm is implemented in the routine simpr:

SUBROUTINE simpr(y,dydx,dfdx,dfdy,nmax,n,xs,htot,nstep,yout,
derivs)

INTEGER n,nmax,nstep,NMAXX

REAL htot,xs,dfdx(n),dfdy(nmax,nmax) ,dydx(n),y(n),yout(n)

EXTERNAL derivs

PARAMETER (NMAXX=50) Maximum expected value of n.

USES deri vs, | ubksb, | udcnp
Performs one step of semi-implicit midpoint rule. Input are the dependent variable y(1:n),
its derivative dydx (1:n), the derivative of the right-hand side with respect to z, dfdx(1:n),
and the Jacobian dfdy(1:nmax,1:nmax) at xs. Also input are htot, the total step
to be taken, and nstep, the number of substeps to be used. The output is returned as
yout(1:n). derivs is the user-supplied subroutine that calculates dydx.

INTEGER 1i,j,nn,indx (NMAXX)

REAL d,h,x,a(NMAXX,NMAXX) ,del (NMAXX) , ytemp (NMAXX)

h=htot/nstep Stepsize this trip.
do 12 i=1,n Set up the matrix 1 — hf’.
don j=1,n
a(i,j)=-h*dfdy(i,j)
enddo 11
a(i,i)=a(i,i)+1.
enddo 12
call ludcmp(a,n,NMAXX,indx,d) LU decomposition of the matrix.
do 13 i=1,n Set up right-hand side for first step. Use yout for
yout (i)=h*(dydx (i) +h*dfdx(i)) temporary storage.
enddo 13
call lubksb(a,n,NMAXX,indx,yout)
dous i=1,n First step.

del(i)=yout (i)
ytemp (i)=y(i)+del(i)

enddo 14
x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
do 17 nn=2,nstep General step.
do1s i=1,n Set up right-hand side for general step.
yout (i) =h*yout (i)-del (i)
enddo 15

call lubksb(a,n,NMAXX,indx,yout)
doi1s i=1,n
del(i)=del(i)+2.*yout (i)
ytemp(i)=ytemp(i)+del (i)
enddo 16
x=x+h
call derivs(x,ytemp,yout)
enddo 17
do1s i=1,n Set up right-hand side for last step.
yout (i) =h*yout (i)-del (i)
enddo 18
call lubksb(a,n,NMAXX,indx,yout)
do1o i=1,n Take last step.
yout (i) =ytemp (i) +yout (i)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



*

16.6 Stiff Sets of Equations 737

enddo 19
return
END

The routine simpr isintended to be used in aroutine stifbs that is almost exactly the
same as bsstep. The only differences are:
e The stepsize sequence is

n=2,6,10,14, 22,34, 50,..., (16.6.35)

where each member differs from its predecessor by the smallest multiple of 4 that
makes the ratio of successive termsbe < % The parameter KMAXX istaken to be 7.

e The work per unit step now includes the cost of Jacobian evaluations as well
as function evaluations. We count one Jacobian evaluation as equivalent to N
function evaluations, where N is the number of equations.

e Once again the user-supplied routine derivs isadummy argument and so can have
any name. However, to maintain “plug-compatibility” with rkqgs, bsstep and
stiff, theroutine jacobn is not an argument and must have exactly this name. It
iscalled once per steptoreturnf’ (dfdy) and of /Ox (dfdx) asfunctionsof z andy.

Here is the routine, with comments pointing out only the differences from bsstep:

SUBROUTINE stifbs(y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER nv,NMAX,KMAXX,IMAX
REAL eps,hdid,hnext,htry,x,dydx(av),y(nv),yscal(av),SAFE1,
SAFE2,REDMAX,REDMIN, TINY,SCALMX
EXTERNAL derivs
PARAMETER (NMAX=50,KMAXX=7,IMAX=KMAXX+1,SAFE1=.25,SAFE2=.7,
REDMAX=1.e-5,REDMIN=.7,TINY=1.e-30,SCALMX=.1)
USES deri vs, j acobn, si npr, pzextr
Semi-implicit extrapolation step for integrating stiff o.d.e.’s, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y(1:nv) and its
derivative dydx (1:nv) at the starting value of the independent variable x. Also input are
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal(1:nv)
against which the error is scaled. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
derivs is a user-supplied subroutine that computes the derivatives of the right-hand side
with respect to x, while jacobn (a fixed name) is a user-supplied subroutine that computes
the Jacobi matrix of derivatives of the right-hand side with respect to the components of y.
Be sure to set htry on successive steps to the value of hnext returned from the previous
step, as is the case if the routine is called by odeint.
INTEGER i,iq,k,kk,km,kmax,kopt,nvold,nseq(IMAX)
REAL epsl,epsold,errmax,fact,h,red,scale,work,wrkmin,xest,xnew,
a(IMAX) ,alf (KMAXX,KMAXX) ,dfdx (NMAX) ,dfdy (NMAX ,NMAX) ,
err (KMAXX) ,yerr (NMAX) ,ysav (NMAX) , yseq (NMAX)
LOGICAL first,reduct
SAVE a,alf,epsold,first,kmax,kopt,nseq,nvold,xnew
DATA first/.true./,epsold/-1./,nvold/-1/
DATA nseq /2,6,10,14,22,34,50,70/ Sequence is different from bsstep.
if (eps.ne.epsold.or.nv.ne.nvold)then Reinitialize also if nv has changed.
hnext=-1.e29
xnew=-1.e29
eps1=SAFEl*eps
a(1)=nseq(1)+1
do 11 k=1,KMAXX
a(k+1)=a(k)+nseq(k+1)
enddo 11
do 13 iq=2,KMAXX
do 12 k=1,ig-1
alf (k,iq)=epsi**((a(k+1)-a(ig+1))/
((a(ig+1)-a(1)+1.)*(2%k+1)))
enddo 12
enddo 13

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



738 Chapter 16.  Integration of Ordinary Differential Equations

epsold=eps
nvold=nv Save nv.
a(1)=nv+a(1) Add cost of Jacobian evaluations to work co-
do 14 k=1,KMAXX efficients.
a(k+1)=a(k)+nseq(k+1)
enddo 14

do 15 kopt=2,KMAXX-1
if (a(kopt+1) .gt.a(kopt)*alf (kopt-1,kopt))goto 1
enddo 15
kmax=kopt
endif
h=htry
do s i=1,nv
ysav(i)=y(i)
enddo 16
call jacobn(x,y,dfdx,dfdy,nv,nmax) Evaluate Jacobian.
if (h.ne.hnext.or.x.ne.xnew)then
first=.true.
kopt=kmax
endif
reduct=.false.
do 18 k=1,kmax
xnew=x+h
if (xnew.eq.x)pause ’stepsize underflow in stifbs’
call simpr(ysav,dydx,dfdx,dfdy,nmax,nv,x,h,nseq(k),yseq,
derivs) Semi-implicit midpoint rule.
xest=(h/nseq(k))**2 The rest of the routine is identical to bsstep.
call pzextr(k,xest,yseq,y,yerr,nv)
if (k.ne.1)then
errmax=TINY
do 17 i=1,nv
errmax=max (errmax,abs(yerr(i)/yscal(i)))
enddo 17
errmax=errmax/eps
km=k-1
err (km)=(errmax/SAFE1)** (1./(2xkm+1))
endif
if(k.ne.1l.and. (k.ge.kopt-1.or.first))then
if (errmax.lt.1.)goto 4
if (k.eq.kmax.or.k.eq.kopt+1)then
red=SAFE2/err (km)
goto 3
else if (k.eq.kopt)then
if (alf (kopt-1,kopt).1t.err(km))then
red=1./err (km)
goto 3
endif
else if (kopt.eq.kmax)then
if (alf (km,kmax-1) .1t.err (km))then
red=alf (km,kmax-1)*
SAFE2/err (km)
goto 3
endif
else if (alf (km,kopt).lt.err(km))then
red=alf (km,kopt-1) /err (km)
goto 3
endif
endif
enddo 18
red=min(red,REDMIN)
red=max (red,REDMAX)
h=h*red
reduct=.true.
goto 2

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



16.6 Stiff Sets of Equations 739

X=Xnew
hdid=h
first=.false.
wrkmin=1.e35
do 19 kk=1,km
fact=max (err (kk) ,SCALMX)
work=fact*a(kk+1)
if (work.lt.wrkmin)then
scale=fact
wrkmin=work
kopt=kk+1
endif
enddo 19
hnext=h/scale
if (kopt.ge.k.and.kopt.ne.kmax.and. .not.reduct)then
fact=max(scale/alf (kopt-1,kopt) ,SCALMX)
if (a(kopt+1)*fact.le.wrkmin)then
hnext=h/fact
kopt=kopt+1
endif
endif
return
END

The routine stifbs is an excellent routine for all stiff problems, competitive with
the best Gear-type routines. stiff is comparable in execution time for moderate N and
e $107*. Bythetimee ~ 1078, stifbs isroughly an order of magnitude faster. There
are further improvements that could be applied to stifbs to make it even more robust. For
example, very occasionally ludcmp in simpr will encounter a singular matrix. You could
arrange for the stepsize to be reduced, say by a factor of the current nseq(k). There are
also certain stability restrictions on the stepsize that come into play on some problems. For
a discussion of how to implement these automatically, see[6].

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall). [1]

Kaps, P, and Rentrop, P. 1979, Numerische Mathematik, vol. 33, pp. 55-68. [2]

Shampine, L.F. 1982, ACM Transactions on Mathematical Software, vol. 8, pp. 93-113. [3]

Enright, W.H., and Pryce, J.D. 1987, ACM Transactions on Mathematical Software, vol. 13,
pp. 1-27. [4]

Bader, G., and Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 373-398. [5]

Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 399-422.

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505-535.

Deuflhard, P. 1987, “Uniqueness Theorems for Stiff ODE Initial VValue Problems,” Preprint SC-
87-3 (Berlin: Konrad Zuse Zentrum fiur Informationstechnik). [6]

Enright, W.H., Hull, T.E., and Lindberg, B. 1975, BIT, vol. 15, pp. 10-48.

Wanner, G. 1988, in Numerical Analysis 1987, Pitman Research Notes in Mathematics, vol. 170,
D.F. Griffiths and G.A. Watson, eds. (Harlow, Essex, U.K.: Longman Scientific and Tech-
nical).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag).

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



740 Chapter 16. Integration of Ordinary Differential Equations

16.7 Multistep, Multivalue, and
Predictor-Corrector Methods

Thetermsmultistep and multival uedescribe two different ways of implementing
essentially the same integration technique for ODEs. Predictor-corrector is a partic-
ular subcategrory of these methods — in fact, the most widely used. Accordingly,
the name predictor-corrector is often loosely used to denote all these methods.

We suspect that predictor-corrector integrators have had their day, and that they
are no longer the method of choice for most problemsin ODEs. For high-precision
applications, or applications where eval uations of the right-hand sides are expensive,
Bulirsch-Stoer dominates. For convenience, or for low precision, adaptive-stepsize
Runge-Kuttadominates. Predictor-corrector methods have been, we think, squeezed
out in the middle. There is possibly only one exceptiona case: high-precision
solution of very smooth equations with very complicated right-hand sides, as we
will describe later.

Nevertheless, these methods have had a long historical run. Textbooks are
full of information on them, and there are a lot of standard ODE programs around
that are based on predictor-corrector methods. Many capable researchers have a
lot of experience with predictor-corrector routines, and they see no reason to make
a precipitous change of habit. It is not a bad idea for you to be familiar with the
principles involved, and even with the sorts of bookkeeping details that are the bane
of these methods. Otherwise there will be abig surprisein store when you first have
to fix a problem in a predictor-corrector routine.

Let us first consider the multistep approach. Think about how integrating an
ODE isdifferent from finding theintegral of afunction: For afunction, theintegrand
has a known dependence on the independent variable x, and can be evaluated at
will. For an ODE, the “integrand” is the right-hand side, which depends both on
2 and on the dependent variables y. Thus to advance the solution of y' = f(x,y)
from z,, to x, we have

) =+ [ " @ y)da’ (167.)

In asingle-step method like Runge-Kutta or Bulirsch-Stoer, the value y ,, 11 a 2,41
dependsonly on y,,. Inamultistep method, we approximate f (z, ) by apolynomial
passing through several previous points x,,,x,_1,... and possibly also through
Zn+1. Theresult of evaluating theintegral (16.7.1) at © = x .41 isthen of the form

Yn+1 = Yn + W(BoY), 11 + Bry, + Bovys_1 + B3y _o+ -+ ) (16.7.2)

where y/, denotes f (., yn), and so on. If 8y = 0, the method is explicit; otherwise
it isimplicit. The order of the method depends on how many previous steps we
use to get each new vaue of .

Consider how we might solve an implicit formulaof theform (16.7.2) for y ,, 1.
Two methods suggest themselves: functional iteration and Newton's method. In
functional iteration, we take some initial guessfor y,,. 1, insert it into the right-hand
side of (16.7.2) to get an updated value of ¥, 1, insert this updated value back into
the right-hand side, and continueiterating. But how are weto get an initial guessfor

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



